Solar Power /rasei/ en Locking in Solar Power: How a Stronger Interlayer Boosts Perovskite Cell Durability /rasei/2026/01/05/locking-solar-power-how-stronger-interlayer-boosts-perovskite-cell-durability <span>Locking in Solar Power: How a Stronger Interlayer Boosts Perovskite Cell Durability</span> <span><span>Daniel Morton</span></span> <span><time datetime="2026-01-05T12:31:00-07:00" title="Monday, January 5, 2026 - 12:31">Mon, 01/05/2026 - 12:31</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2026-01/2026_01_Marder_Science_Thumbnail.png?h=6377f7ce&amp;itok=gKUipwt7" width="1200" height="800" alt="Illustration of a phosphonic acid reacting with a perovskite"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> <a href="/rasei/taxonomy/term/170"> Publication Highlight </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/51" hreflang="en">Barlow</a> <a href="/rasei/taxonomy/term/266" hreflang="en">Energy Generation</a> <a href="/rasei/taxonomy/term/50" hreflang="en">Marder</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/287" hreflang="en">Perovskites</a> <a href="/rasei/taxonomy/term/273" hreflang="en">Solar Power</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p class="lead">New Molecular Designs Extend the Life and Efficiency of Next-Generation Solar Cells</p><div class="feature-layout-callout feature-layout-callout-large"><div class="ucb-callout-content"><div class="ucb-box ucb-box-title-left ucb-box-alignment-none ucb-box-style-fill ucb-box-theme-lightgray"><div class="ucb-box-inner"><div class="ucb-box-title">Find out more</div><div class="ucb-box-content"><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-large ucb-link-button-full" href="https://doi.org/10.1126/science.adz7969" rel="nofollow"><span class="ucb-link-button-contents">Read the Article</span></a></p></div></div></div></div></div><p>Posted on the RASEI website with permission and minor modifications from the piece published by David DeFusco on the <a href="https://aps.unc.edu/home-page-news-item/study-reveals-tiny-chemical-fix-dramatically-extends-the-life-of-next-generation-solar-cells/" data-entity-type="external" rel="nofollow">UNC Chapel Hill Applied Physical Sciences Site here</a>.&nbsp;</p><p>&nbsp;</p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p><span>A new study published in&nbsp;</span><em><span>Science</span></em><span> led by researchers at UNC-Chapel Hill, with collaborators from the Renewable and Sustainable Energy Institute (RASEI), explains why perovskite solar cells—fast-rising rivals to traditional silicon panels—tend to break down under prolonged heat and sunlight, especially ultraviolet light, and reveals a promising strategy to dramatically slow that damage.</span></p><p><span>The work focuses on a thin “interlayer” that sits between the electrode and the perovskite material inside a solar cell. This layer is only a single molecule thick, but it plays an outsized role in how long the device lasts.</span></p><p><span>“These interlayers are meant to help charges move efficiently out of the perovskite and into the circuit,” said Chengbin Fei, first author of the study and a postdoctoral researcher in UNC’s Department of Applied Physical Sciences. “But we found that some of the same chemical features that make them useful can also cause long-term damage if they’re not tightly attached to the electrode.”</span></p><p><span>Many high-performance perovskite solar cells use interlayers based on phosphonic acids. These molecules stick to a transparent electrode made of indium tin oxide, or ITO, and help pull positive charges out of the perovskite. Until now, most researchers assumed these layers were harmless once installed. Fei and his colleagues discovered that this is not always true.</span></p><p><span>The researchers found that some of these tiny helper molecules aren’t firmly stuck to the solar cell’s surface. When the cell gets hot or sits in sunlight that includes ultraviolet rays, those that are loosely attached molecules can break free. Once that happens, they start interfering with the solar material itself. They trigger harmful changes inside the cell: key ingredients fall apart, iodine-related components react in damaging ways and lead turns into a form that no longer works properly. Over time, all of this damage adds up and causes the solar cell to produce less and less electricity.</span></p><p><span>“In simple terms, the acid part of these molecules can act like a slow poison,” said Fei. “At high temperatures and under UV light, it accelerates chemical reactions that the perovskite just can’t tolerate.”</span></p><p><span>To understand what was happening, the researchers used a range of techniques, including spectroscopy and X-ray measurements, to watch how the materials changed over time. They found that stronger acids caused faster damage and that UV light made the reactions much worse. This explained why devices that look stable at first can fail after hundreds or thousands of hours outdoors.</span></p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default 3"> <div class="ucb-article-row-subrow row"> <div class="ucb-article-text col-lg d-flex align-items-center" itemprop="articleBody"> <div><p><span>The key advance came when the researchers at UNC and the created a new version of this thin helper layer containing a combination of two molecules that sticks much more tightly to the electrode surface. Seth Marder, the senior author at the University of Colorado-Boulder and Director of the </span><a href="/rasei/" rel="nofollow"><span>Renewable and Sustainable Energy Institute (RASEI)</span></a><span> says “the molecule our team developed was designed to not only interact with the electrode surface but more strongly with its neighboring molecules. Consequently the molecules stay more securely in place, reducing the reactive parts that can break away and damage the solar material that is deposited on top ”. As a result, the layer still helps charges flow out of the cell, but it no longer triggers the damaging reactions that shorten the cell’s lifetime.</span></p><p><span>Simply put, “when the molecule is firmly locked onto the surface, it can’t wander into the perovskite and cause trouble,” said Fei. “That simple change makes a huge difference over time.”</span></p><p><span>Solar cells made with the new interlayer design showed striking improvements and met a key performance milestone. Under harsh test conditions—85 degrees Celsius, continuous bright light that included UV and constant operation—the devices ran for nearly 3,000 hours before losing just 10 percent of their efficiency. That level of durability has not been reported before for this type of perovskite solar cell.</span></p></div> </div> <div class="ucb-article-content-media ucb-article-content-media-right col-lg"> <div> <blockquote class="ucb-article-blockquote"> <div class="ucb-article-blockquote-icon font-gold"> <i class="fa-solid fa-quote-left"></i> </div> <div class="ucb-article-blockquote-text"> <div>The molecule our team developed was designed to not only interact with the electrode surface but more strongly with its neighboring molecules. Consequently the molecules stay more securely in place, reducing the reactive parts that can break away and damage the solar material that is deposited on top. <br> - Seth Marder</div> </div></blockquote> </div> </div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p><span>The researchers also scaled up their approach to small solar modules, closer to what might be used in real products. These “minimodules,” about the size of a postcard, reached power conversion efficiencies above 22 percent and kept working for more than 2,000 hours under the same stressful conditions, which is considered very high performance for this type of solar technology.</span></p><p><span>Jinsong Huang, senior author of the paper and UNC Louis D. Rubin Distinguished Professor, said the results address one of the most important barriers to commercialization. “Efficiency alone is not enough,” he said. “For perovskite solar technology to succeed outside the lab, it must survive heat, light and time. This work shows a clear chemical pathway to make that happen.”</span></p><p><span>Beyond improving one specific material, the study sends a broader message to the field. Tiny details at buried interfaces—places that are hard to see and easy to overlook—can control the lifetime of an entire solar module. By understanding and managing these details, researchers can design devices that last far longer.</span></p><p><span>“This study reminds us that stability is a chemistry problem as much as an engineering one,” said Wei You, a co-author of the study and UNC Cary C. Boshamer Distinguished Professor of Chemistry and Applied Physical Sciences. “Once you understand the chemistry, you can start to fix it.”</span></p></div> </div> </div> </div> </div> <div>JANUARY 2026</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2026-01/2026_01_Marder_Science_Hero.png?itok=lL771p1G" width="1500" height="322" alt="Illustration of a phosphonic acid reacting with a perovskite"> </div> </div> <div>On</div> <div>White</div> Mon, 05 Jan 2026 19:31:00 +0000 Daniel Morton 1469 at /rasei Layer-by-layer epitaxial growth of perovskite heterostructures with tunable band offsets /rasei/2025/11/14/layer-layer-epitaxial-growth-perovskite-heterostructures-tunable-band-offsets <span>Layer-by-layer epitaxial growth of perovskite heterostructures with tunable band offsets</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-11-14T10:20:37-07:00" title="Friday, November 14, 2025 - 10:20">Fri, 11/14/2025 - 10:20</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-11/2025_11_13_Science.png?h=d95abdc4&amp;itok=vT2-NWU1" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/51" hreflang="en">Barlow</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/266" hreflang="en">Energy Generation</a> <a href="/rasei/taxonomy/term/50" hreflang="en">Marder</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/287" hreflang="en">Perovskites</a> <a href="/rasei/taxonomy/term/273" hreflang="en">Solar Power</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>SCIENCE, 2025, 390, 6774, 716-721<br> November 2025</div> <script> window.location.href = `https://doi.org/10.1126/science.adx5685`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Fri, 14 Nov 2025 17:20:37 +0000 Daniel Morton 1449 at /rasei Surface Passivation for Halide Optoelectronics: Comparing Optimization and Reactivity of Amino-Silanes with Formamidinium /rasei/2025/11/07/surface-passivation-halide-optoelectronics-comparing-optimization-and-reactivity-amino <span>Surface Passivation for Halide Optoelectronics: Comparing Optimization and Reactivity of Amino-Silanes with Formamidinium</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-11-07T11:17:31-07:00" title="Friday, November 7, 2025 - 11:17">Fri, 11/07/2025 - 11:17</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-12/2025_11_07_JACS_Thumbnail.png?h=d95abdc4&amp;itok=04QH0f-r" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/51" hreflang="en">Barlow</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/266" hreflang="en">Energy Generation</a> <a href="/rasei/taxonomy/term/50" hreflang="en">Marder</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/287" hreflang="en">Perovskites</a> <a href="/rasei/taxonomy/term/273" hreflang="en">Solar Power</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2025, 147, 46, 42918-42925</div> <script> window.location.href = `https://doi.org/10.1021/jacs.5c15574`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Fri, 07 Nov 2025 18:17:31 +0000 Daniel Morton 1455 at /rasei RASEI Fellow Joe Berry featured in BBC article on Perovskites /rasei/2025/10/16/rasei-fellow-joe-berry-featured-bbc-article-perovskites <span>RASEI Fellow Joe Berry featured in BBC article on Perovskites</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-10-16T09:33:36-06:00" title="Thursday, October 16, 2025 - 09:33">Thu, 10/16/2025 - 09:33</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-10/p0m8r4j2.jpg?h=d1cb525d&amp;itok=TQNVxlcs" width="1200" height="800" alt="Solar cell manufacture"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/259"> Media Engagement </a> <a href="/rasei/taxonomy/term/177"> News </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/144" hreflang="en">Berry</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/287" hreflang="en">Perovskites</a> <a href="/rasei/taxonomy/term/273" hreflang="en">Solar Power</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>October 2025</div> <script> window.location.href = `https://www.bbc.com/future/article/20251015-perovskite-the-wonder-material-that-could-transform-solar-energy`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Thu, 16 Oct 2025 15:33:36 +0000 Daniel Morton 1405 at /rasei Symmetry Breaking Induced by Chiral Phosphonic Acids in a 2D Tin-Halide Perovskite /rasei/2025/09/29/symmetry-breaking-induced-chiral-phosphonic-acids-2d-tin-halide-perovskite <span>Symmetry Breaking Induced by Chiral Phosphonic Acids in a 2D Tin-Halide Perovskite</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-09-29T17:27:50-06:00" title="Monday, September 29, 2025 - 17:27">Mon, 09/29/2025 - 17:27</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-10/2025_09_29_JACS.png?h=c4e54fe5&amp;itok=Rj5x9cU4" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/51" hreflang="en">Barlow</a> <a href="/rasei/taxonomy/term/120" hreflang="en">Beard</a> <a href="/rasei/taxonomy/term/320" hreflang="en">CHOISE</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/266" hreflang="en">Energy Generation</a> <a href="/rasei/taxonomy/term/148" hreflang="en">Luther</a> <a href="/rasei/taxonomy/term/50" hreflang="en">Marder</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/287" hreflang="en">Perovskites</a> <a href="/rasei/taxonomy/term/335" hreflang="en">Schelhas</a> <a href="/rasei/taxonomy/term/290" hreflang="en">Semiconductors</a> <a href="/rasei/taxonomy/term/273" hreflang="en">Solar Power</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2025, 147, 40, 36642-36649</div> <script> window.location.href = `https://doi.org/10.1021/jacs.5c11860`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Mon, 29 Sep 2025 23:27:50 +0000 Daniel Morton 1427 at /rasei Deciphering the Structure of PM6-Type Conjugated Polymer Aggregates in Solution and Film /rasei/2025/09/29/deciphering-structure-pm6-type-conjugated-polymer-aggregates-solution-and-film <span>Deciphering the Structure of PM6-Type Conjugated Polymer Aggregates in Solution and Film</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-09-29T17:25:06-06:00" title="Monday, September 29, 2025 - 17:25">Mon, 09/29/2025 - 17:25</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-10/2025_09_29_ChemMat.png?h=c4e54fe5&amp;itok=2pkhaRy4" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/290" hreflang="en">Semiconductors</a> <a href="/rasei/taxonomy/term/273" hreflang="en">Solar Power</a> <a href="/rasei/taxonomy/term/111" hreflang="en">Toney</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>CHEMISTRY OF MATERIALS, 2025, 37, 19, 7882-7893</div> <script> window.location.href = `https://doi.org/10.1021/acs.chemmater.5c01540`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Mon, 29 Sep 2025 23:25:06 +0000 Daniel Morton 1425 at /rasei In Situ Electrochemistry of Buried Interfaces in Metal Halide Perovskites: Probing Energy Bands, Halide Redox Activity, and Kinetics /rasei/2025/09/22/situ-electrochemistry-buried-interfaces-metal-halide-perovskites-probing-energy-bands <span>In Situ Electrochemistry of Buried Interfaces in Metal Halide Perovskites: Probing Energy Bands, Halide Redox Activity, and Kinetics</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-09-22T17:29:43-06:00" title="Monday, September 22, 2025 - 17:29">Mon, 09/22/2025 - 17:29</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-10/2025_09_22_AdvEnergyMat.png?h=c4e54fe5&amp;itok=PM5QkNl4" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/144" hreflang="en">Berry</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/266" hreflang="en">Energy Generation</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/287" hreflang="en">Perovskites</a> <a href="/rasei/taxonomy/term/306" hreflang="en">SPECS</a> <a href="/rasei/taxonomy/term/290" hreflang="en">Semiconductors</a> <a href="/rasei/taxonomy/term/273" hreflang="en">Solar Power</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>ADVANCED ENERGY MATERIALS, 2025, e02719</div> <script> window.location.href = `https://doi.org/10.1002/aenm.202502719`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Mon, 22 Sep 2025 23:29:43 +0000 Daniel Morton 1428 at /rasei Fixing Solar’s Weak Spot: Why a tiny defect could be a big problem for perovskite cells /rasei/2025/09/15/fixing-solars-weak-spot-why-tiny-defect-could-be-big-problem-perovskite-cells <span>Fixing Solar’s Weak Spot: Why a tiny defect could be a big problem for perovskite cells</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-09-15T09:25:36-06:00" title="Monday, September 15, 2025 - 09:25">Mon, 09/15/2025 - 09:25</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-09/2025_09_RobustPerovskites_Thumbnail%20%281%29.jpg?h=d95abdc4&amp;itok=fxgDZc-x" width="1200" height="800" alt="Picture of the damage done at defect sites in perovskite films"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> <a href="/rasei/taxonomy/term/170"> Publication Highlight </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/266" hreflang="en">Energy Generation</a> <a href="/rasei/taxonomy/term/67" hreflang="en">McGehee</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/287" hreflang="en">Perovskites</a> <a href="/rasei/taxonomy/term/273" hreflang="en">Solar Power</a> <a href="/rasei/taxonomy/term/305" hreflang="en">TEAMUP</a> </div> <a href="/rasei/our-community">Daniel Morton</a> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><div class="feature-layout-callout feature-layout-callout-large"><div class="ucb-callout-content"><div class="ucb-box ucb-box-title-left ucb-box-alignment-none ucb-box-style-fill ucb-box-theme-lightgray"><div class="ucb-box-inner"><div class="ucb-box-title">Find out more</div><div class="ucb-box-content"><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-large" href="https://doi.org/10.1016/j.joule.2025.102102" rel="nofollow"><span class="ucb-link-button-contents">Read the Article</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-large" href="https://techxplore.com/news/2025-09-solar-weak-tiny-defect-big.html" rel="nofollow"><span class="ucb-link-button-contents">TechXplore Highlight</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-large" href="https://engineeringness.com/fixing-solars-weak-spot-why-tiny-defects-could-break-perovskite-cells/" rel="nofollow"><span class="ucb-link-button-contents">Engineering Ness Highlight</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-large" href="https://knowridge.com/2025/09/how-tiny-defects-threaten-perovskite-solar-cells/" rel="nofollow"><span class="ucb-link-button-contents">Knowridge Highlight</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-large ucb-link-button-full" href="https://scitechdaily.com/mystery-solved-scientists-discover-why-perovskite-solar-cells-melt/" rel="nofollow"><span class="ucb-link-button-contents">SciTechDaily Highlight</span></a></p><p>&nbsp;</p></div></div></div></div></div><p class="lead"><em>Solar energy is a crucial part of our clean energy future, but a new, highly efficient solar material has a hurdle that needs to be addressed. A&nbsp;</em><a href="https://doi.org/10.1016/j.joule.2025.102102" rel="nofollow"><em>recent study</em></a><em> reveals how a microscopic weak spot can lead to total device failure and what we can do about it.</em></p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p>A collaboration between a team led by <a href="/rasei/michael-mcgehees-rasei-engagement" rel="nofollow">RASEI Fellow Mike McGehee</a> and scientists at the <a href="https://research-hub.nrel.gov/en/persons/axel-palmstrom" rel="nofollow">National Renewable Energy Laboratory (NREL)</a>, just published in the scientific journal <a href="https://doi.org/10.1016/j.joule.2025.102102" rel="nofollow">Joule</a>, provides evidence to help solve one of the key hurdles to large-scale manufacture of next generation perovskite solar cells.</p><p>Imagine you have a series of hoses connected end-to-end to water your garden. The water flows from the faucet, through each hose, and out the last nozzle. When every hose is getting enough water, the flow is strong and steady. This is like how a string of solar cells works on a solar panel; the sun’s energy makes electrons (the “water”) that flow through each cell, creating electricity.</p><p>But what happens if a single section of the hose gets kinked? The water can’t flow through it anymore, but there is still a lot of pressure coming from the faucet. The pressure will build up and eventually burst the weak spot in the kinked section. This is analogous to what happens when a section of the solar panel is shaded --- the cell becomes ‘kinked’. When just one part of a panel is shaded, the unshaded cells still generate electricity and “force” current backward through the non-producing shaded cell. This is known as reverse bias, and it can cause the shaded cell to permanently degrade and fail.</p><p>For conventional silicon-based solar cells, reverse bias is a known problem and engineers have developed a solution: a bypass diode. You can think of this as a small side-channel that allows the water to flow around the kinked hose, keeping the rest of the system running smoothly without building up damaging pressure.</p><p>However, the bypass diode solution doesn’t work for perovskite-based solar cells, a leading candidate for the next generation of more efficient and more affordable solar cells, because they are often too “weak”. One of the key pieces in the puzzle to solving this reverse bias problem in perovskite solar cells is understanding how the cell degrades when under reverse bias, and that is the focus of this research collaboration.</p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default 3"> <div class="ucb-article-row-subrow row"> <div class="ucb-article-text col-lg d-flex align-items-center" itemprop="articleBody"> <div><p>The McGehee group has a long history of success in creating and optimizing perovskite solar cells. Beginning in 2018, their focus shifted to a critical challenge: what happens when these cells are in the shade? Many researchers had already observed that even a small amount of reverse bias caused the materials to heat up and "melt," leading to rapid and permanent degradation of the perovskite.</p><p>While these observations were widely accepted, the exact reason for the degradation was a mystery and a subject of much debate. "These are complex systems, and it can be very hard to untangle what is going on," explained Ryan DeCrescent, one of the study's lead researchers. This is where the McGehee group's work came in—they set out to find the specific mechanism behind this destructive behavior.</p></div> </div> <div class="ucb-article-content-media ucb-article-content-media-right col-lg"> <div> <blockquote class="ucb-article-blockquote"> <div class="ucb-article-blockquote-icon font-gold"> <i class="fa-solid fa-quote-left"></i> </div> <div class="ucb-article-blockquote-text"> <div>"These are complex systems, and it can be very hard to untangle what is going on," explained Ryan DeCrescent</div> </div></blockquote> </div> </div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p>The perovskite layer is formed through an approach called solution processing. Solution processing is kind of like making a pancake, you make your batter and when you pour it onto a hot griddle several things happen: the water evaporates, the solids set, the thickness is determined by how much you add, and you often get gaps, or holes in your pancake. In these devices, the perovskite ingredients are put into a solvent. The solvent is then dropped onto the earlier layers of the device and warmed up, whereby the solvent evaporates and a film is formed, but often with defects, or gaps. Defects and pinholes are easily formed in such films. This is a particular issue for perovskites, since the precursor solution has low viscosity and during the heating stage defect formation is common.</p><p>To better understand the impact of these defects on the performance of the solar cells under reverse bias you need to take a really good look at them. Central to this work is a suite of tools that enabled exceptional examination of the perovskite layer. “A large part of this work was really setting ourselves up to look very carefully at these surfaces” said DeCrescent. Four main techniques were employed to better understand the defects: Electroluminescence (EL) imaging with a high-resolution camera, Scanning Electron Microscopy (SEM), Laser-Scanning Confocal Microscopy (LSCM) and Video Thermography. The strategy was to compare ‘before, during, and after’ pictures of devices that had been exposed to reverse bias. The high-resolution camera showed that “weak spots” in the device were the origin of degradation. To better understand “perfect” device behavior and efficiently scan a large number of samples (~100), the team setup a large number of very small devices, creating thin films with an area of just 0.032 mm<sup>2.&nbsp;</sup><span>&nbsp;</span>To put that in perspective, each device was about the width of two human hairs. The small size of these devices meant that it was possible to create devices that were defect-free, since it is hard to create defect-free films on a larger scale. Through this combination of a large sample size, and advanced imaging, the team was able to rapidly explore many different types of defects.</p><p>This approach of using advanced imaging proved to be an incredibly effective way not only to identify the defects but also to understand exactly what happens to them. "Video thermography and electroluminescence imaging are really powerful techniques for such devices; for example, defects that are sometimes difficult to spot really stand out using these approaches," explained Ryan. Using the thermography technique the defects glow brightly, and in the electroluminescence technique the defects show as dark. Using these techniques in combination provided a very reliable and effective way of mapping the defects. The techniques clearly revealed where the degradation was occurring.</p><p>The team’s evidence strongly supports the argument that defects, like pinholes and thin spots in the perovskite layer, are the precise locations where reverse-bias breakdown begins. The thermography images showed that these sites are where the material rapidly heats up and melts, essentially shorting between the two contact layers. In contrast, defect-free devices showed remarkable stability, surviving hours of reverse bias without any significant degradation.</p><p>This level of detailed understanding is crucial for the future of this technology. The team's research provides a clear path forward for scientists and engineers: to develop more robust and stable perovskite solar cells, they must prioritize making pinhole-free films and using more robust contact layers to prevent this kind of abrupt and permanent thermal damage.</p><p><span>This work represents a critical step in the journey toward commercializing perovskite solar cells. It highlights the fact that detail-driven, rigorous scientific approaches are needed to understand complex problems. With this knowledge in hand, scientists can now engineer devices that are designed for longevity, ensuring these promising materials can fulfill their potential.</span></p></div> </div> </div> </div> </div> <div>September 2025</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2025-09/2025_09_RobustPerovskites_Hero.jpg?itok=3S_Lxm7x" width="1500" height="322" alt="Picture of the damage done at defect sites in perovskite films"> </div> </div> <div>On</div> <div>White</div> Mon, 15 Sep 2025 15:25:36 +0000 Daniel Morton 1391 at /rasei Powering the Future: U.S. Students Gain International Experience Through Photovoltaics Research in Berlin /rasei/2025/08/26/powering-future-us-students-gain-international-experience-through-photovoltaics-research <span>Powering the Future: U.S. Students Gain International Experience Through Photovoltaics Research in Berlin</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-08-26T13:43:01-06:00" title="Tuesday, August 26, 2025 - 13:43">Tue, 08/26/2025 - 13:43</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-08/2025_08_IRES_2025Cohort_Thumbnail.png?h=d3502f1d&amp;itok=l7dQ8FOb" width="1200" height="800" alt="Illustration showing the collaboration for the 2025 IRES Cohort"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/144" hreflang="en">Berry</a> <a href="/rasei/taxonomy/term/359" hreflang="en">IRESPerovskites</a> <a href="/rasei/taxonomy/term/67" hreflang="en">McGehee</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/273" hreflang="en">Solar Power</a> <a href="/rasei/taxonomy/term/111" hreflang="en">Toney</a> </div> <span>Lauren Scholz</span> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p class="lead"><em><span>A summer of international research concludes as U.S. students contribute to solar innovation in Berlin while gaining hands-on training and global scientific perspective through the NSF-IRES Program.</span></em></p><p><span>We are proud to celebrate the successful completion of our first cohort of students bound for Berlin as part of the National Science Foundation International Research Experience for Students (NSF-IRES) Program in metal-halide perovskite photovoltaics. Over the course of ten intensive weeks, nine students from universities across the United States immersed themselves in collaborative research at Humboldt-Universität zu Berlin and Helmholtz-Zentrum Berlin. Their work focused on advancing next-generation solar technologies—specifically, the development and optimization of metal-halide perovskite solar cells.</span></p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default 3"> <div class="ucb-article-row-subrow row"> <div class="ucb-article-text col-lg d-flex align-items-center" itemprop="articleBody"> <div><p><span>This timely exchange supported critical progress in the field of photovoltaics, where metal-halide perovskites offer promising pathways to higher efficiency and more versatile solar solutions beyond the limits of conventional silicon-based technologies. By engaging directly with leading German research teams, students not only deepened their technical knowledge and experimental skills but also gained valuable cross-cultural experience and a global perspective on scientific collaboration.</span></p><p><span>Selected for their academic excellence and commitment to renewable energy innovation, the participants—ranging from undergraduate to graduate level—contributed to a variety of interdisciplinary projects in chemistry, physics, materials science, and engineering. Their contributions helped strengthen the scientific partnerships between U.S. and German institutions and demonstrated the impact of international collaboration in addressing global climate and energy challenges.</span></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-large ucb-link-button-full" href="/rasei/ires-perovskites/ires-perovskites-2025-cohort" rel="nofollow"><span class="ucb-link-button-contents">Find out more about the 2025 IRES Cohort</span></a></p></div> </div> <div class="ucb-article-content-media ucb-article-content-media-right col-lg"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2025-08/IRES_2025_Cohort.jpg?itok=5aw3Y3Kp" width="1500" height="977" alt="Group photo showing all but one of the 2025 IRES Cohort"> </div> <span class="media-image-caption"> <p><span>2025 NSF IRES-Perovskites participants. Pictured (left to right): Megan Davis, Keya Amundsen, Jiselle Ye, Jack Schall, Keenan Wyatt, Kell Fremouw, Leo Beck, Gabriel Graf. Not pictured: Arial Brookhart.</span></p> </span> </div> </div> </div> </div> </div> </div> </div> </div> <div>August 2025</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2025-08/2025_08_IRES_2025Cohort_Hero.png?itok=ppX5I_zB" width="1500" height="322" alt="Illustration of collaboration across the 2025 IRES Cohort"> </div> </div> <div>On</div> <div>White</div> Tue, 26 Aug 2025 19:43:01 +0000 Daniel Morton 1385 at /rasei How non-ohmic contact-layer diodes in perovskite pinholes affect abrupt low-voltage reverse-bias breakdown and destruction of solar cells /rasei/2025/08/25/how-non-ohmic-contact-layer-diodes-perovskite-pinholes-affect-abrupt-low-voltage-reverse <span>How non-ohmic contact-layer diodes in perovskite pinholes affect abrupt low-voltage reverse-bias breakdown and destruction of solar cells</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-08-25T19:55:56-06:00" title="Monday, August 25, 2025 - 19:55">Mon, 08/25/2025 - 19:55</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-10/2025_08_25_Joule.png?h=c4e54fe5&amp;itok=8ljZsUmw" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/266" hreflang="en">Energy Generation</a> <a href="/rasei/taxonomy/term/67" hreflang="en">McGehee</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/287" hreflang="en">Perovskites</a> <a href="/rasei/taxonomy/term/273" hreflang="en">Solar Power</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>JOULE, 2025, 102102</div> <script> window.location.href = `https://doi.org/10.1016/j.joule.2025.102102`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 26 Aug 2025 01:55:56 +0000 Daniel Morton 1414 at /rasei